

Radio Sync Receiver
Application Guide

:

Winter 2008

Copyright(c) 2004-2008 Beagle Software. All rights reserved.
Beagle Software provides this publication “as is” without warranty of any kind,

either expressed or implied. The use of the software accompanying this
documentation is subject to the Software License Agreement contained herein.

MS-DOS, Windows 95, Windows 98, Windows NT, Windows 2000,
Windows XP and Windows 2003 are trademarks of Microsoft, Inc.

2

1. Introduction
The Radio Sync BS2 is an integrated receiver with high sensitivity and
a pre-decoding of the time signal transmitted from WWVB, DCF, JJY,
MSF and HBG. The receiver is prepared for multi-frequency and
country reception by using integrated reception and decoder logic. The
Radio Sync BS2 is powered by a micro-controller which provides for a
smart and simple instruction interface.

 Features

o Automatic reception of long wave time signals worldwide
including WWVB
o Manual or automatic selection of radio control signals.
Automatic switch between dual band signals. Built in decoding
for different bands. Built-in multi-band ferrite core antenna
o Adjustable reception settings (including time and duration of
reception). Forced reception mode
o Real time clock (local time and UTC time), 24-hour system.
DST and time zone support
o Real-time signal quality value during reception
O Standard RS-232 Interface

 2. Overview
2.1 Interface to application
The Radio Sync BS2 uses two wires (RXD, TXD) in the RS-232
interface to communicate.
2.2 Time piece functions
The receiver will respond to commands from the host and return
required time information.
- Time information available includes hours, minutes, second, day of
week, month, year (ie yy), special information (e.g. DST status)
- The Radio Sync BS2 provides local time (factoring in time zone) and
UTC time
- The receiver’s real time clock can be set manually, e.g. if no reception
is possible
2.3 Time signal reception functions
- Selection of WWVB, DCF, JJY or MSF broadcast signal
- Adjustable reception options:

o max. duration of reception
o number of receptions
o validation of receptions – minimum requirements for consecutive or
cumulative time signal receptions
o Decoding options, e.g. time only, time + date only

- Three selectable reception modes:
o manual

3

o continuous
o pre-set reception sequence

(The duration of reception, the number of auto receptions, interval between auto
reception trials (if more than one is defined), start time of 1st auto reception of the day
can all be defined by the command interface)

 2.4 Available reception signal settings
Countries with long wave time broadcast supported by the Radio Sync
receiver include the USA (WWVB), UK (MSF), JAPAN (JJY) and
Europe /Germany (DCF) bands. A number of standards exist for the
transmission of accurate time data using RF signals. Collectively, the
standards are known as atomic clock or Radio Controlled Clock (RCC)
standards. The RCC standards all share certain signal characteristics,
but differ in other ways. One common characteristic is that each
standard transmits one data bit each second using pulse width
modulation, and the data is transmitted in frames of 60 bits (or a period
of 60 seconds). However, the transmission frequency, the width of the
pulses and the order in which data is transmitted varies according to
the particular standard which is set by each country.

 In the US the NIST sponsored WWVB is a 60 kHz broadcast from
Colorado and Hawaii. Signal coverage is throughout the continental
US, and is generally better for locations in proximity to the transmitters.

 Japan broadcasts its time signal data at two frequencies: 40 kHz and
60 kHz. However the data carried at each frequency is identical, so in
practice it does not matter which frequency is chosen if the chosen
frequency is decoded correctly.

 Each format differs depending on the data carried by the 60 bits during
a time span of 1 minute is allocated and used. The width, or duration,
of high and low pulses used to signify data bits, markers within the
data, and the start and end of the data frame also varies according to
the individual country standards.

Country Band Name Frequency (kHz)

Germany DCF 77.5

Japan JJY40 40

Japan JJY60 60

UK MSF 60

USA WWVB 60

4

 In the Radio Sync receiver clock reception can be set by software
command from an external host. Various single and multi reception-
modes can be used:

 3. Application Development
3.1 Minimal Implementation
The minimal time keeping application includes an initialization,
reception and time reading. The initialization sequence is used for
setting reception parameters including the transmitter type. Choice of
reception mode (manual, continuous, pre-set) instructs the receiver to
begin receiving broadcast signals. The typical application includes a
time read step and a verification step to check when the receiver has
last been synchronization. Further refinements include setting of the
local clock and local settings and fine tuning the reception sequence
and reception parameters.

 3.2 Demo Application
The demo application provides an hands on introduction to functions of
the Radio Sync BS2 receiver. The demo application software (including
a Windows based installer) is available for download from our
homepage. The Demo application includes the most commands and
provides a way of sending data to the receiver.

5

 4. Command Protocol
The Radio Sync receiver replies to commands made from an external
device. The commands must be formatted specifically for the receiver.
The protocol used involves a series of signal, command and data and
verification bytes of information.

Radio Sync BS2 Layer (Request):

 Radio Sync BS2 Layer (Response):

 RS-232 Layer:

6

 4.1 RS-232 Interface
The Radio Sync receiver features a simple 3-wire interface
(Transmit, Receive and Ground). It requires no hardware or
software handshaking be set to communicate.

 Use the following serial settings when communicating to
the receiver:
• 9600 baud
• No parity bit
• Eight data bits
• One stop bit

 Protocol Example
Requesting the local time (command 0x02) via the RS232 protocol:

 The Radio Sync BS2 response:

7

 Interpretation: It is 11:47:49 AM on November 8th 06 (bytes 3->8) (a
Wednesday (byte 9)). The clock of the Radio Sync BS2 is not in
sync with a time signal transmitter (byte 10) and the DST is not active
(byte 11). The time zone is set to UTC+1 (byte 12) and while calculating
local time, the DST information has to be considered (byte 13).

 4.2 CRC-Calculation
A cyclic redundancy check (CRC) is a type of hash function used to
produce a checksum to verify incoming data integrity. CRC is used for
all strings sent to and from the receiver (exceptions are noted). The
CRC used in the Radio Sync BS2 is based on a CRC16 (see
http://en.wikipedia.org/wiki/CRC16 for details). It is calculated for all
bytes of the Radio Sync BS2 Layer (see General command structure).
Note: For testing and evaluating reasons, the Radio Sync BS2 will also
accept two 0x00 bytes as CRC. For production environments however,
we recommend using valid CRC bytes.

 4.3 CRC Implementation
In Windows, the commonly available CRC 16 dynamic link library
CRC16.dll, can be used to calculate the CRC directly.
A standard implementation in C:
unsigned int CalcCrc16(unsigned char *Buffer,
unsigned char Length)
{
volatile unsigned char i,j;
volatile unsigned int Crc16 = 0;
volatile int c;
char *pBuf;
pBuf = (char*)(Buffer);
for(i=0;i<Length;i++)
{
c = *pBuf++;
c = c << 8;
for(j=0;j<8;j++)
{
if((Crc16^c) & 0x8000)
Crc16 = (Crc16<<1) ^ 0x1021;
else
Crc16 = Crc16 << 1;
c = c << 1;
}
}
return (Crc16);
}

8

 Implementation of CRC Calculation using a lookup table in
C# (.NET Framework) and C:
public class CRCCalc
{
static ushort[] Crc16Table = new ushort[] {
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7,
0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,
0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,
0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE,
0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485,
0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D,
0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,
0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC,
0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,
0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12,
0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A,
0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,
0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B,
0x8D68, 0x9D49, 0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32,
0x1E51, 0x0E70, 0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A,
0x9F59, 0x8F78, 0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D,
0xF14E, 0xE16F, 0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025,
0x7046, 0x6067, 0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C,
0xE37F, 0xF35E, 0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214,
0x6277, 0x7256, 0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F,
0xD52C, 0xC50D, 0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447,
0x5424, 0x4405, 0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E,
0xC71D, 0xD73C, 0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676,
0x4615, 0x5634, 0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9,
0xB98A, 0xA9AB, 0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1,
0x3882, 0x28A3, 0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8,
0xABBB, 0xBB9A, 0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0,
0x2AB3, 0x3A92, 0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B,
0x9DE8, 0x8DC9, 0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83,
0x1CE0, 0x0CC1, 0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA,
0x8FD9, 0x9FF8, 0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2,
0x0ED1, 0x1EF0,
};
public static ushort CalcCRC(byte[] buffer)
{
ushort crc = 0;
ushort bufferPointer = 0;
for (int i = 0; i < buffer.Length; i++)
{
ushort crcRightShift = (ushort)(crc >> 8);
ushort crcLeftShift = (ushort)(crc << 8);
ushort byteFromBuffer =
buffer[bufferPointer++];
crc =
(ushort)(Crc16Table[(ushort)(((ushort)(crcRig
htShift ^ byteFromBuffer)) & 0xFF)] ^
crcLeftShift);
}
return crc;

9

}
}
const unsigned int code Crc16Table[256] =
{
0X0000, 0X1021, 0X2042, 0X3063, 0X4084, 0X50A5, 0X60C6, 0X70E7,
0X8108, 0X9129, 0XA14A, 0XB16B, 0XC18C, 0XD1AD, 0XE1CE, 0XF1EF,
0X1231, 0X0210, 0X3273, 0X2252, 0X52B5, 0X4294, 0X72F7, 0X62D6,
0X9339, 0X8318, 0XB37B, 0XA35A, 0XD3BD, 0XC39C, 0XF3FF, 0XE3DE,
0X2462, 0X3443, 0X0420, 0X1401, 0X64E6, 0X74C7, 0X44A4, 0X5485,
0XA56A, 0XB54B, 0X8528, 0X9509, 0XE5EE, 0XF5CF, 0XC5AC, 0XD58D,
0X3653, 0X2672, 0X1611, 0X0630, 0X76D7, 0X66F6, 0X5695, 0X46B4,
0XB75B, 0XA77A, 0X9719, 0X8738, 0XF7DF, 0XE7FE, 0XD79D, 0XC7BC,
0X48C4, 0X58E5, 0X6886, 0X78A7, 0X0840, 0X1861, 0X2802, 0X3823,
0XC9CC, 0XD9ED, 0XE98E, 0XF9AF, 0X8948, 0X9969, 0XA90A, 0XB92B,
0X5AF5, 0X4AD4, 0X7AB7, 0X6A96, 0X1A71, 0X0A50, 0X3A33, 0X2A12,
0XDBFD, 0XCBDC, 0XFBBF, 0XEB9E, 0X9B79, 0X8B58, 0XBB3B, 0XAB1A,
0X6CA6, 0X7C87, 0X4CE4, 0X5CC5, 0X2C22, 0X3C03, 0X0C60, 0X1C41,
0XEDAE, 0XFD8F, 0XCDEC, 0XDDCD, 0XAD2A, 0XBD0B, 0X8D68, 0X9D49,
0X7E97, 0X6EB6, 0X5ED5, 0X4EF4, 0X3E13, 0X2E32, 0X1E51, 0X0E70,
0XFF9F, 0XEFBE, 0XDFDD, 0XCFFC, 0XBF1B, 0XAF3A, 0X9F59, 0X8F78,
0X9188, 0X81A9, 0XB1CA, 0XA1EB, 0XD10C, 0XC12D, 0XF14E, 0XE16F,
0X1080, 0X00A1, 0X30C2, 0X20E3, 0X5004, 0X4025, 0X7046, 0X6067,
0X83B9, 0X9398, 0XA3FB, 0XB3DA, 0XC33D, 0XD31C, 0XE37F, 0XF35E,
0X02B1, 0X1290, 0X22F3, 0X32D2, 0X4235, 0X5214, 0X6277, 0X7256,
0XB5EA, 0XA5CB, 0X95A8, 0X8589, 0XF56E, 0XE54F, 0XD52C, 0XC50D,
0X34E2, 0X24C3, 0X14A0, 0X0481, 0X7466, 0X6447, 0X5424, 0X4405,
0XA7DB, 0XB7FA, 0X8799, 0X97B8, 0XE75F, 0XF77E, 0XC71D, 0XD73C,
0X26D3, 0X36F2, 0X0691, 0X16B0, 0X6657, 0X7676, 0X4615, 0X5634,
0XD94C, 0XC96D, 0XF90E, 0XE92F, 0X99C8, 0X89E9, 0XB98A, 0XA9AB,
0X5844, 0X4865, 0X7806, 0X6827, 0X18C0, 0X08E1, 0X3882, 0X28A3,
0XCB7D, 0XDB5C, 0XEB3F, 0XFB1E, 0X8BF9, 0X9BD8, 0XABBB, 0XBB9A,
0X4A75, 0X5A54, 0X6A37, 0X7A16, 0X0AF1, 0X1AD0, 0X2AB3, 0X3A92,
0XFD2E, 0XED0F, 0XDD6C, 0XCD4D, 0XBDAA, 0XAD8B, 0X9DE8, 0X8DC9,
0X7C26, 0X6C07, 0X5C64, 0X4C45, 0X3CA2, 0X2C83, 0X1CE0, 0X0CC1,
0XEF1F, 0XFF3E, 0XCF5D, 0XDF7C, 0XAF9B, 0XBFBA, 0X8FD9, 0X9FF8,
0X6E17, 0X7E36, 0X4E55, 0X5E74, 0X2E93, 0X3EB2, 0X0ED1, 0X1EF0,
};
unsigned int CalcCrc16(char *Buffer, unsigned char Length)

{
unsigned char i;
unsigned int Crc16 = 0;
for(i=0;i<Length;i++)
{
Crc16 =
Crc16Table[((Crc16>>8)^*Buffer++)&0xFF]^(Crc16<<8);
}
return (Crc16);
}

10

5.0 Radio Sync BS2 – List of commands

Num-
ber

Command Description

0x01 GetUTCTime Reads the UTC time from the re-
ceiver

0x02 GetLocalTime Reads the local time from the re-
ceiver.

0x03 SetUTCTime Sets the UTC internal clock of the
receiver

0X04 SetLocalTime Sets the local time of the internal
clock of the receiver

0x05 SetLocalTimeOptions Sets the options to enable the Re-
ceiver to calculate the local time from
the UTC time.

0x06 SetDST Enables / disables the one hour DST
offset

0x07 SetTransmitter Sets the transmitter / mode of the
receiver

0x08 GetReceiverStatus Gets the current receive status of the
receiver.

0x09 SetReceptionOptions Sets the reception options of the
receiver

0x0A StartReception Starts a manual reception of re-
ceiver.

0X0B StartContinuousRecep-
tion

Starts a continuous reception

0x0C GetLastSuccessfulSync Returns the time (UTC) and date of
the last successful reception.

0X0D SetSyncTimespan Defines the time span between re-
ceptions.

0x0E SetSecondPolling Toggles second polling.

0x0F GetRAWData Raw data dump

0X10 GetVersion Returns the firmware version of the
receiver

0X11 UseReferenceTime End reception when a time-code is
received that matches the internal
time of the receiver

11

 5.1 Command Detail

GetUTCTime (0x01)
Parameter(s) –

 Result
byte second 00-59
byte minute 00-59
byte hour 00-23
byte day 01-31
byte month 01-12
byte year 00-99
byte day of week

1 … Monday
2 … Tuesday
[…]
6 … Saturday
7 … Sunday

byte Sync State:
0 not synchronized
1 synchronized

 Description Reads the UTC time from the Radio Sync BS2.

GetLocalTime (0x02)
Parameter(s) –

 Result byte second 00-59
byte minute 00-59
byte hour 00-23
byte day 01-31
byte month 01-12
byte year 00-99
byte day of week

1 … Monday
2 … Tuesday
[…]
6 … Saturday
7 … Sunday

byte sync state 0 … not synchronized 1 …
synchronized
byte DST-Flag 0 … Standard time 1 … DST
byte timeZone See SetLocalTimeOptions
byte DSTSupport See SetLocalTimeOptions
Description Reads the UTC time from the Radio Sync BS2.

12

SetUTCTime (0x03)
Parameter(s) byte second 00-59
byte minute 00-59
byte hour 00-23
byte day 01-31
byte month 01-12
byte year 00-99

 Result byte commandResult see below
Description Sets the internal clock of the Radio Sync BS2.
Side Effects:

• After the time is set manually, the
GetLastSuccessfulSync command will always return
000000 and the sync state of the GetUTCTime /
GetLocalTime commands will always be 0.

 SetLocalTime (0x04)
Parameter(s) byte second 00-59
byte minute 00-59
byte hour 00-23
byte day 01-31
byte month 01-12
byte year 00-99

 Result byte commandResult, see below
Description Sets the internal clock of the Radio Sync BS2. If the
time/date information was set successfully, the Radio Sync BS2 returns
1. If the Radio Sync BS2 is not able to set the time-information (e.g.
hour >23), it returns 0.
Side Effects:

• After the time is set manually, the
GetLastSuccessfulSync command will always return
000000 and the sync state of the GetUTCTime /
GetLocalTime commands will always be 0.

13

SetLocalTimeOptions (0x05)
Parameter(s)
byte timeZone

0 … +- 0 hr
1 … +1 hr
[…]
14 … +14hr
255 … -1 hr
[…]
244 … -12

byte DSTSupport 0 … false 1 … true

 Result byte commandResult, see below
Description Sets the options to enable the Radio Sync BS2 to calculate the
local time from the UTC time.
• timeZone: defines the deviation of your local timezone from the UTC time.
• hasDST: if false, the one hour DST offset is not taken into account when
calculating the local time, even if the transmitter sends the DST flag.

 SetDST (0x06)
Parameter(s) byte dst 0 … DST off 1 … DST on

 Result
byte commandResult, see below
Description Enables / disables the one hour DST offset. At the next
successful reception, the manual set DST flag will be overwritten by the
transmitted value.

 SetTransmitter (0x07)
Parameter(s) byte transmitterCode
1 … DCF77
2 … WWVB
3 … MSF
4 … JJY60
5 … JJY40
6 … DCF77 / MSF
7 … JJY 40/60
8 … Global Scan

 Result byte commandResult, see below
Description Sets the transmitter / mode of the Radio Sync BS2
Side Effects:
• The timezone information is set according to the location of the chosen
transmitter. If you are using one of the scan modes, you should set the time
zone manually by using SetLocalTimeOptions to avoid getting wrong local
time calculations.
• A manual reception is started

14

 GetReceiverStatus (0x08)
Parameter(s) –

 Result
byte transmitterCode See SetTransmitter
byte isReceiving 1 … true 0 … false
byte bsi 0-3
Description • Gets the current receive status of the Radio Sync BS2.
• transmitterCode: code of the transmitter, the Radio Sync BS2 is using
(has used the last time)
• isReceiving: indicates, whether the Radio Sync BS2 is receiving or not
• bsi: value of the BS-Indicator of the Radio Sync BS2. Always 0 if BS2 is
not in receiving mode.

SetReceptionOptions (0x09)
Parameter(s) byte maxDuration
byte numberOfValidReceptions
byte consecutiveReceptions 0 … false 1 … true
byte autoRecEnabled 0 … false 1 … true
byte autoRecHour 0-23
byte autoRecMinute 0-59
byte autoRecDelta 0-255
byte autoRecCount 0-10
byte checkParity 0 … true 1 … false
byte protocolMask
0 … FullDecode
2 … TimeOnly
1 … TimeDateOnly

 Result
byte commandResult, see below
Description Sets the reception options of the Radio Sync BS2.

• maxDuration: duration of a reception try
• numberOfValidReceptions: defines how many decodings must
fit logical together, to allow an update of the internal clock.
• consecutiveReceptions: if true, the decodings defined by
numberOfValidReceptions must be received in a consecutive
order.
• autoRecEnabled: definies wether the automatic reception is enabled
or not.
• autoRecHour / autoRecMinute: defines the starting point of an
automatic reception
• autoRecDelta: timespan (in minutes) between two autoreception
tries, if the prior reception has failed.
• autoRecCount: number of autoreception tries. If the last try was
also unsuccessful, the next try will start at the next the starting point
defined by autoRecHour / autoRecMinute
• checkParity: if false, the parity-bits sent by the transmitters are not
taken into account.
• protocolMask: defines which part of the transmission is to be
decoded.

15

StartReception (0x0A)
Parameter(s) –

 Result
byte commandResult see below
Description Starts a manual reception.

StartContinuousReception (0x0B)
Parameter(s) –

 Result
byte commandResult, see below
Description Starts a continuous reception. Immediately after an invalid
or valid reception, the next reception is started again.

 GetLastSuccessfulSync (0x0C)
Parameter(s) –

 Result
byte second 00-59
byte minute 00-59
byte hour 00-23
byte day 01-31
byte month 01-12
byte year 00-99
Description Returns the time (UTC) and date of the last successful
reception. This information will be lost, if the receiver looses power. In
this case it will return six bytes valued 0.

 SetSyncTimespan (0x0D)
Parameter(s) byte hour 0-255

 Result
byte commandResult, see below
Description Defines the time span between the last successful
reception and the moment after that the sync state of the
GetLocalTime / GetUTCTime result will switch back to 0

16

SetSecondPolling (0x0E)
Parameter(s) byte polling 0 … off 1 … on

 Result byte commandResult, see below
Description Enables / disables the second polling. If enabled, the
Radio Sync BS2 will send a single byte exactly at the change between
two seconds. The sent bytes represents the new second. If the Radio
Sync BS2 is in polling mode, no other commands than
SetSecondPolling will be accepted.

GetRAWData (0x0F)
Parameter(s) –

 Result
10 x byte[8] of rawData
Description This commands returns 10 packages of an eight-byte-
array (64 bits).
The Protocol Identifier Bits added by the BS2 are stored in the first 4
bits. The remaining 60 bits represent the signal received by the BS2.
Altogether the raw data of the 10 last receptions are transmitted. The
latest received raw data is sent first. There are no CRC bytes sent at
the end of the packet.
All raw data information will be erased, if
• the Radio Sync BS2 is disconnected from the power supply
• a new reception is started

GetVersion (0x10)
Parameter(s) –

 Result
char[] version
Description Returns the firmware version of the Radio Sync BS2.

 UseReferenceTime (0x11)
Parameter(s)
byte useReferenceTime 0 … false 1 … true

 Result byte commandResult, see below
Description If the reference time is enabled, a reception will end, if a
time-code is received, that fits to the internal time of the Radio Sync
BS2.

17

 Command Result codes:
Each command that sets an option of the Radio Sync BS2 returns a
single data byte. If the Radio Sync BS2 has accepted the command, it
will return 255 (or 0xFF). In case of an error, the result byte gives you
some information about the cause of the error:

 RD_START 0x00
RD_BOARDADDRESS 0x01
RD_REQUESTOR_ADDRESS 0x02
RD_RX_CMD 0x03
RD_DATA_LENGTH 0x04
RD_DATA 0x05
RD_CRC 0x06
RD_ETX 0x07
CRC_CHECK 0x08
RD_END 0x09
RD_ERROR 0x0A
SET_SECOND_ERROR 0x20
SET_MINUTE_ERROR 0x21
SET_HOUR_ERROR 0x22
SET_DATE_ERROR 0x23
SET_MONTH_ERROR 0x24
SET_YEAR_ERROR 0x25
SET_LOCAL_TIME_OPTION_ERROR 0x30
SET_HAS_DST_OPTION_ERROR 0x31
SET_DST_ERROR 0x40
TRANSMITTER_CODE_ERROR 0x50
MAX_DURATION_ERROR 0x60
NMB_VALID_RECEPTIONS_ERROR 0x61
CONSECUTIVE_RECEPTIONS_ERROR 0x62
AUTO_REC_ON_OFF_ERROR 0x63
AUTO_REC_HOUR_ERROR 0x64
AUTO_REC_MINUTE_ERROR 0x65
AUTO_REC_DELTA_ERROR 0x66
AUTO_REC_COUNT_ERROR 0x67
CHECK_PARITY__ERROR 0x68
PROTOCOLL_MASK_ERROR 0x69
START_RECEPTION_ERROR 0x70
SET_SECOND_POLLING_ERROR 0x80
REFERENCE_TIME_ERROR 0x90
NO_ERROR 0xFF

18

6. Technical Support:

 If you are having problems with the Adapter that this document does not
address, please feel free to contact us at:

E-mail: support@beaglesoft.com
Phone: 612-370-1091
Fax: 612-605-7138
Mail: Beagle Software
 126 N 3rd St, Ste 407

 Minneapolis, MN 55401 USA

